Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Warning: preg_replace(): Compilation failed: this version of PCRE is not compiled with PCRE_UTF8 support at offset 0 in /web/Sites/BlickinsBuch.de/functions.php on line 241 Blickinsbuch.de - Algebra - Thomas W. Hungerford
     Artikel werden geladen

    Algebra

    Algebra

    Autoren:

    Verlag:
    Springer-Verlag   Weitere Titel dieses Verlages anzeigen

    Auflage: 1. A. (1974), korr. Nachdr
    Erschienen: März 2003
    Seiten: 504
    Sprache: Englisch
    Preis: 52.38 €
    Maße: 244x163x38
    Einband: Gebundene Ausgabe
    Reihe: Graduate Texts in Mathematics
    ISBN: 9780387905181

    Inhaltsverzeichnis

    Prefaceix
    Acknowledgmentsxiii
    Suggestions on the Use of This Bookxv
    Introduction: Prerequisites and Preliminaries1
    1.Logic1
    2.Sets and Classes1
    3.Functions3
    4.Relations and Partitions6
    5.Products7
    6.The Integers9
    7.The Axiom of Choice, Order and Zorn's Lemma12
    8.Cardinal Numbers15
    Chapter I: Groups23
    1.Semigroups, Monoids and Groups24
    2.Homomorphisms and Subgroups30
    3.Cyclic Groups35
    4.Cosets and Counting37
    5.Normality, Quotient Groups, and Homomorphisms41
    6.Symmetric, Alternating, and Dihedral Groups46
    7.Categories: Products, Coproducts, and Free Objects52
    8.Direct Products and Direct Sums59
    9.Free Groups, Free Products, Generators & Relations64
    Chapter II: The Structure of Groups70
    1.Free Abelian Groups70
    2.Finitely Generated Abelian Groups76
    3.The Krull-Schmidt Theorem83
    4.The Action of a Group on a Set88
    5.The Sylow Theorems92
    6.Classification of Finite Groups96
    7.Nilpotent and Solvable Groups100
    8.Normal and Subnormal Series107
    Chapter III: Rings114
    1.Rings and Homomorphisms115
    2.Ideals122
    3.Factorization in Commutative Rings135
    4.Rings of Quotients and Localization142
    5.Rings of Polynomials and Formal Power Series149
    6.Factorization in Polynomial Rings157
    Chapter IV: Modules168
    1.Modules, Homomorphisms and Exact Sequences169
    2.Free Modules and Vector Spaces180
    3.Projective and Iiyective Modules190
    4.Horn and Duality199
    5.Tensor Products207
    6.Modules over a Principal Ideal Domain218
    7.Algebras226
    Chapter V: Fields and Galois Theory230
    1.Field Extensions231
    Appendix: Ruler and Compass Constructions238
    2.The Fundamental Theorem243
    Appendix: Symmetric Rational Functions252
    3.Splitting Fields, Algebraic Closure and Normality257
    Appendix: The Fundamental Theorem of Algebra265
    4.The Galois Group of a Polynomial269
    5.Finite Fields278
    6.Separability282
    7.Cyclic Extensions289
    8.Cyclotomic Extensions297
    9.Radical Extensions302
    Appendix: The General Equation of Degree n307
    Chapter VI: The Structure of Fields311
    1.Transcendence Bases311
    2.Linear Disjointness and Separability318
    Chapter VII: Linear Algebra327
    1.Matrices and Maps328
    2.Rank and Equivalence335
    Appendix : Abelian Groups Defined by
    Generators and Relations343
    3.Determinants348
    4.Decomposition of a Single Linear Transformation and Similarity355
    5. The Characteristic Polynomial, Eigenvectors and Eigenvalues--------366
    Chapter VIII: Commutative Rings and Modules371
    1.Chain Conditions372
    2.Prime and Primary Ideals377
    3.Primary Decomposition383
    4.Noetherian Rings and Modules387
    5.Ring Extensions394
    6.Dedekind Domains400
    7.The Hilbert Nullstellensatz409
    Chapter IX: The Structure of Rings414
    1.Simple and Primitive Rings415
    2.The Jacobson Radical424
    3.Semisimple Rings434
    4.The Prime Radical; Prime and Semiprime Rings444
    5.Algebras450
    6.Division Algebras456
    Chapter X: Categories464
    1.Functors and Natural Transformations465
    2.Adjoint Functors476
    3.Morphisms480
    List of Symbols485
    Bibliography489
    Index493
    xxiii

    Register

    A. C. C. see ascending chain condition Abel's Theorem 308
    abelian field extension 292
    abelian group 24
    —defined by generators and relations 343ff divisible— 195ff finitely generated— 76ff free— 7 Iff action of group on set 88ff additive notation for groups 25, 29, 38, 70
    adjoining a root 236
    adjoint —associativity 214
    classical—matrix 353
    —pair of functors 477ff affine variety 409
    algebra(s) 226ff, 450ff division— 456ff Fundamental Theorem of— 266
    group— 227
    homomorphism of—
    228
    —ideal 228
    left Artinian— 451
    tensor product of— 229
    algebraic —algebra 453
    —closure 259ff —element 233, 453
    —field extension 233ff —number 242
    —set 409
    algebraically —closed field 258
    —{independent 31 Iff algorithm division— 11, 158
    Euclidean— 141
    alternating —group 49
    —multilinear function 349
    annihilator 206, 388,417
    anti-isomorphism 330
    antisymmetric relation 13
    Aitin, E. vi, 251,252, 288
    Artinian left—algebras 451
    —module 372fT
    —rings 372ff, 419ff, 435ff ascending —central series 100
    —chain condition 83, 372ff associate 135
    associated prime ideal 380, 387
    associative —binary operation 24
    generalized—law 28
    AutkF 243
    automorphism 30, 119
    extendible— 251, 260
    inner—91,459
    A^-automorphism 243
    —of a group 30, 90
    axiom —of choice 13
    —of class formation 2
    —of extensionality 2
    —of pair formation 6
    power— 3
    Baer lower radical 444ff base transcendence— 313ff basis 71, 181
    dual— 204
    Hilbert—Theorem 391
    matrix relative to a—
    329ff standard— 336
    transcendence— 313ff bijective function 5
    bilinear map 211, 349
    canonical— 211
    bimodule 202
    binary operation 24
    closed under a— 31
    binomial —coefficient 118
    —theorem 118
    Boolean ring 120
    bound (greatest) lower— 14
    least upper— 14
    upper— 13
    cancellation 24, 116
    canonical —bilinear map 211
    —epimorphism 43, 125, 172
    —forms 337
    —injection 60, 130, 173
    Jordan—form 361
    —middle linear map 209
    primary rational—form 361
    —projection 59,130,173
    rational—form 360
    Cardan's formulas 310
    cardinal number(s) 16ff exponentiation of— 22
    —inequalities 17
    product of— 16
    sum of— 16
    trichotomy law for— 18
    cardinality 16
    Cartesian product 6, 7ff category 52ff, 464ff concrete 55
    dual— 466
    opposite— 466
    product— 467
    Cauchy's Theorem 93
    Cayley's Theorem 90


    Cayley-Hamilton Theorem 367, 369
    center —of a group 34, 91
    —of a ring 122
    central ascending—series 100
    —idempotents 135
    —simple division algebra 456
    centralizer 89
    chain 13
    chain conditions 83ff, 372ff char/? 119
    characteristic —of a ring 119
    —polynomial 366fF
    —vectors 367
    —values 367
    —space 368
    —subgroups 103
    Chinese Remainder Theorem 131
    choice axiom of— 13
    —function 15
    class 2ff axiom of—formation 2
    —equation 90, 91
    equivalence— 6
    proper— 2
    quotient— 6
    classical adjoint 353
    classification of finite groups 96ff closed —intermediate field 247
    —object 410
    —subgroups 247
    —under a binary operation 31
    closure
    algebraic— 259fT
    integral— 397
    normal— 265
    codomain 3
    coequalizer 482
    cofactor 352
    Cohen, I. S. 388
    coimage 176
    cokernel 176
    difference— 482
    —of a morphism 483
    column elementary—operation 338
    —rank 336
    —space 336
    —vector 333
    commutative —binary operation 24
    —diagram 4
    generalized—law 28
    —group 24
    —ring 115
    commutator 102
    —subgroup 102
    companion matrix 358
    comparable elements 13
    complement 3
    complete —direct sum 59
    —lattice 15
    —ring of quotients 144
    —set of coset representatives 39
    completely reducible module 437
    composite —function 4
    —functor 468
    —morphism 52
    —subfield 233
    composition series 108, 375
    concrete category 55
    congruence —modulo m 12
    —modulo a subgroup 37
    —relation 27
    conjugacy class 89
    conjugate elements or subgroups 89
    conjugation 88
    constant —polynomial 150
    —term 150, 154
    constructible number 239
    content of a polynomial 162
    Continuum Hypothesis 17
    contraction of an ideal 146, 398
    contravariant —functor 466
    —horn functor 466
    coordinate ring 413
    coproduct 54ff correspondence Galois— 246
    coset 38ff
    complete set of—
    representatives 39
    couniversal object 57
    covariant —functor 465
    —horn functor 465
    Cramer's Rule 354
    cubic résolvant— 272
    cycles 46
    disjoint— 47
    Conway, C. T., xiii
    cyclic
    —field extension 289fT
    —group 32, 35ff —module 171
    —subspace 356
    cyclotomic
    —extension 297ÎT
    —polynomial 166, 298
    D. C. C—, see descending chain condition Dedekind domain 401 ff degree —of a field element 234
    —of inseparability 285ff —of a polynomial 157, 158
    transcendence— 316
    delta Kronecker— 204
    De M organ's Laws 3
    dense ring 418
    Density Theorem 420
    denumerable set 16
    dependence algebraic— 311 ff linear— 181
    derivative 161
    derived subgroup 102
    descending chain condition 83, 372ff determinant 35Iff expansion of a—along a row 353
    —of an endomorphism 354
    diagonal matrix 328
    diagram commutative— 4

    difference —kernel 482
    —cokemel 482
    dihedral group 50
    dimension 185ff relative— 245
    invariant—property 185
    direct —factor 63
    —product 26, 59ff, 130, 131, 173
    —sum 60, 62ff, 173, 175
    —sum of matrices 360
    —summand 63, 437
    discriminant 270
    discrete valuation ring 404
    disjoint linearly—subfields 318ff —permutations 47
    —sets 3
    —union 58
    divisible group 195ff division —algebras 227, 456ff —algorithm 11, 158
    finite—ring 462
    —ring 116
    divisor(s) elementary— 80, 225, 357, 361
    greatest common— 11, 140
    zero— 116
    domain Euclidean— 139
    integral— 116
    —of a function 3
    principal ideal— 123
    Prufer— 409
    valuation— 409
    unique factorization—
    137
    double dual 205
    dual —basis 204
    —category 466
    double— 205
    —map 204
    —module 203ff —statement 54
    echelon reduced row—form 346
    eigenspace 368
    eigenvalues 367ff eigenvectors 367ff Eisenstein's Criterion 164
    elementary —column operation 338
    —divisors 80, 225, 357, 361
    —Jordan matrix 359
    —row operation 338
    —symmetric functions 252
    —transformation matrix 338
    embedded prime 384
    embedding 119
    empty —set 3
    —word 64
    End A 116
    endomorphism(s)
    characteristic
    polynomial of an—
    366ff dense ring of— 418
    determinant of an— 354
    matrix of an— 329ff, 333
    nilpotent— 84
    normal— 85
    —of a group 30
    —ring 116, 179,415
    trace of an— 369
    epic morphism 480
    epimorphism, 30, 118, 170
    canonical— 43, 125, 172
    —in a category 480
    equality 2
    equalizer 482
    equation(s) general—of degree n 308ff linear— 346
    equipollent sets 15
    equivalence —class 6
    —in a category 53
    natural— 468
    —relation 6
    equivalent
    —matrices 332, 335fF
    —series 109, 375
    Euclidean —algorithm 141
    —ring 139
    Euler function 297
    evaluation homomorphism 153
    even permutation 48
    exact sequence 175ff short— 176
    split— 177
    exponentiation —in a group 28
    —of cardinal numbers 22
    extendible automorphism 251,260
    extension field 23 Iff abelian— 292
    algebraic— 233ff cyclic— 289ff, 292
    cyclotomic— 297ff finitely generated— 231
    Galois— 245
    normal— 264ff
    purely inseparable—
    282ff
    purely transcendental—
    314
    radical— 303ff separable— 261,282ff, 324
    separably generated—
    322
    simple— 232
    transcendental— 233, 311ff extension integral— 395
    —of an ideal 145
    —ring 394ff extensionality axiom of— 2
    external —direct sum 60, 173
    —direct product 130
    —weak direct product 60
    factor group 42ff
    factorization
    —in commutative rings
    135ff
    —in polynomial rings
    157ff
    unique" factorization—
    137ff factors invariant—80, 225, 357, 361
    —of a series 107, 375
    faithful module 418
    field 116, 230ff

    algebraically closed—
    258
    —extension 23Iff finite— 278ff, 462
    fixed— 245
    intermediate— 231
    —of rational functions 233
    perfect— 289
    splitting— 257ff finite dimensional —algebra 227
    —field extension 231
    —vector space 186
    finite field 278ff, 462
    finite group 24, 92ff, 96ff finite set 16
    finitely generated —abelian groups 76ff, 343ff —extension field 232
    —group 32
    —ideal 123
    —module 171
    first isomorphism theorem 44,126,172
    Fitting's Lemma 84
    five lemma 180
    short— 176
    fixed field 245
    forgetful functor 466
    form Jordan canonical—361
    multilinear— 349ff primary rational canoni- cal— 361
    rational canonical— 360
    formal —derivative 161
    —power series 154ff four group 29
    fractional ideal 401
    free —abelian group 7Iff —group 65ff —module 18 Iff, 188
    —object functor 479
    —object in a category 55ff —product 68
    rank or dimension of a—
    module 185
    freshman's dream 121
    Frobenius Theorem 461
    fully invariant subgroup 103
    function(s) 3ff bijective— 5
    bilinear—211, 349
    choice— 15
    field of rational— 233
    graph of a— 6
    injective— 4
    left or right inverse of a — 5
    Moebius— 301
    multilinear— 349ff surjective— 5
    symmetric rational—
    252ff
    two sided inverse of a—
    5
    functor 465ff adjoint— 477ff composite— 468
    forgetful— 466
    free object— 479
    horn— 465, 466
    representable— 470ff Fundamental Theorem —of Algebra 265ff —of Arithmetic 12
    —of Galois Theory 245ff, 263
    g.l.b. 14
    Galois —correspondence 246
    —extension 245
    —fields 278ff Fundamental Theorem of—Theory 245ff, 263
    —groups 243
    —group of a polynomial 269ff —Theory 230ff Gauss Lemma 162
    Gaussian Integers 139
    general —equation of degree n 308ff —polynomial of degree n 308
    generalized —associative law 28
    —commutative law 28
    —fundamental theorem of Galois Theory 263
    —multiplicative system 449
    generators and relations 67ff, 343ff generators —of a group 32
    —of an ideal 123
    —of a module 171
    Going-up Theorem 399
    Goldie —ring 447ff —'s Theorem 448
    Goldmann ring 400
    graph 6
    greatest —common divisor 11, 140
    —lower bound 14
    group(s) 24ff abelian— 24, 70if, 76ff —algebra 227
    alternating— 49
    center of a— 34, 91
    cyclic— 32, 35fF
    —defined by generators and relations 67, 343flf dihedral— 50
    direct product of— 26, 59ff direct sum of— 60, 62
    divisible— 195ff factor— 42
    finite— 92ff finitely generated— 32, 76ff free— 65ff free abelian— 7Iff free product of— 68
    Galois— 243
    Galois—of a polynomial
    269ff
    homomorphism of—
    30ff, 43ff
    identity element of a—
    24
    indecomposable— 83
    inverses in— 24
    isomorphic— 30
    isotropy— 89
    join of— 33
    metacyclic— 99
    nilpotent— 100
    —of integers modulo m, 27

    —of rationals modulo one 27
    —of small order 98
    -of symmetries of the square 26
    /7-group 93
    quaternion— 33, 97, 99
    reduced— 198
    —ring 117
    simple— 49
    solvable— 102ff, 108
    symmetric— 26, 46ff torsion— 78
    weak direct product of—
    60, 62
    Hall's Theorem 104
    Halmos, P. ix -Hamilton Cay ley—Theorem 367, 369
    Hilbert —Basis Theorem 391
    —Nullstellensatz 409ff, 412
    —'s Theorem 90 292
    -Holder Jordan—Theorem 111, 375
    Hom/K/4,#) 174, 199ff horn functor 465, 466
    homogeneous —of degree k 158
    —system of equations 346
    homorphism induced— 199, 209
    ^-homomorphism 243
    kernel of a— 31, 119, 170
    matrix of a— 329ff, 333
    natural— 469
    —of algebras 228
    —of groups 30flf, 43fF
    —of modules 170ff, 199ff —of rings 118
    substitution— 153
    Hopkin's Theorem 443
    ideal(s) 122ff algebra— 228
    finitely generated— 123
    fractional— 401
    —generated by a set 123
    invertible— 401
    left quasi-regular— 426
    maximal— 127ff nil— 430
    nilpotent— 430
    order— 220
    primary— 380ff prime— 126ff, 377ff primitive— 425
    principal—ring 123
    proper— 123
    regular left— 417
    idempotent —element 135,437
    orthogonal—s 135, 439
    identity 24, 115
    —function 4
    —functor 465
    —matrix 328
    image inverse— 4, 31
    —of a function 4
    —of a homomorphism 31, 119,170
    —of a set 4
    inclusion map 4
    indecomposable group 83
    independence algebraic— 31 Iff linear— 74, 181
    independent set of ideals 446
    indeterminate 150, 152
    index —of a subgroup 38
    relative— 245
    induced homomorphism 199 209
    induction mathematical— 10
    transfinite— 14
    infinite set 16
    initial object 57
    injections canonical— 60, 130, 173
    injective —function 4
    —module 193ff inner automorphism 91, 459
    inseparable —degree 285ff purely—extension 282ff integers 9ff Gaussian— 139
    —modulo m 27, 116
    integral —closure 397
    —domain 116
    —element 395
    —ring extension 395
    integrally closed ring 397
    intermediate field 231
    closed— 247
    stable— 250
    intermediate value theorem 167
    internal —direct product 131
    —direct sum 62, 175
    —weak direct product 62
    Interpolation Lagrange's—Formula, 166
    intersection 3
    invariant —dimension property 185
    —factors 80, 225, 357, 361
    —subspace 356
    inverse 24, 116
    —image 4, 31
    —of a matrix 331
    two sided—of a function 5
    invertible —element 116
    —fractional ideal 401
    —matrix 331
    irreducible —element 136
    —module 416
    —polynomial 161, 234
    —variety, 413
    irredundant primary de- composition 381
    isolated prime ideal 384
    isomorphism 30, 118, 170
    —theorems 44, 125ff, 172ff natural— 468
    isotropy group 89
    join of groups 33
    Jordan —canonical form 361
    elementary—matrix 359
    —Holder Theorem 111, 375
    Jacobson —Density Theorem 420
    —radical 426fT
    —semisimple 429
    A^-algebra, see algebra A>homomorphism 243
    Kaplansky, I. vi, 251, 391, 432
    kernel, 31, 119, 170
    difference— 482
    —of a morphism 483
    Klein four group 29
    Kronecker —delta 204
    —'s method 167
    Krull —Intersection Theorem, 389
    — Schmidt Theorem, 86
    l.u.b., 14
    Lagrange's —Interpolation Formula 166
    —Theorem 39
    lattice 14
    complete— 15
    Law of Well Ordering 10
    leading coefficient 150
    least —element 13
    —upper bound 14
    left —adjoint 477ff —annihilator 444
    —coset 38
    —exact 201
    —Goldie ring 447ff —ideal 122
    —inverse of a function 5
    —invertible element 116
    —order 447
    —quasi-regular 426
    —quotient ring 447
    length of a series 107, 375
    Levitsky's Theorem 434
    linear —algebra 327ff —combination 71
    —dependence 181
    —equations 346
    —functional 203
    —independence 74, 181, 291
    —ordering 13
    INDEX
    linear transformation 170
    characteristic polynomi-
    al of a— 366ff
    decomposition of a—
    355ff eigenvalues of a— 367
    eigenvectors of a— 367
    elementary divisors of a — 357
    invariant factors of a—
    357
    matrix of a— 329, 333
    nullity of a— 335
    rank of a— 335ff linearly disjoint subfields 318ff linearly independent —automorphisms, 291
    —elements 74, 181
    local ring 147
    localization 147
    logic 1
    lower bound 14
    Lying-over Theorem 398
    w-system 449
    Mac Lane, S. xiii, 325,464
    main diagonal 328
    map, see function Maschke's Theorem 454
    mathematical induction 10
    matrices, 328ff characteristic polynomi- als of— 366ff companion— 358
    determinants of— 351 ff direct sum of— 360
    eigenvalues of— 368
    eigenvectors of— 368
    elementary— 338
    elementary divisors of — 361
    elementary Jordan— 359
    equivalent— 332, 335ff —in row echelon form 346
    invariant factors of—
    361
    invertible— 331
    minors of— 352
    —of a homomorphism 329ff, 333
    rank of— 336, 337
    row spaces of— 336
    secondary— 340
    similar— 332, 355ff skew-symmetric— 335
    symmetric— 335
    trace of— 369
    triangular— 335
    maximal —element 13
    —ideal 127ff —normal subgroup 108
    —subfield 457
    maximum condition 373
    McBrien, V.O. xiii, 121
    McCoy radical 444ff McKay, J.H. 93
    meaningful product 27
    membership 2
    metacyclic group 99
    middle linear map 207, 217
    canonical— 209
    minimal —annihilator 226
    —element 373
    —left ideal 416
    —normal subgroup 103
    —polynomial 234, 356
    —prime ideal 382
    minimum —condition 373
    —element 13
    —polynomial 234
    minor of a matrix 352
    modular left ideal 417
    module(s) 168ff, 371
    algebra— 451
    Artinian— 372ff
    completely reducible—
    437
    direct sum of— 173, 175
    direct product of— 173
    dual— 2031T
    exact sequence of— 175ff faithful—418
    free— 181ff, 188
    homomorphism of—
    170ff, 199ff injective— 193ff isomorphism theorems for— 172ff Noetherian—372ff —over a principal ideal domain 218ff projective— 190ff rank of— 185
    reflexive— 205
    semisimple— 437
    simple— 416
    suçn of— 171
    tensor product of—
    208ff torsion— 179, 220
    torsion-free— 220
    trivial— 170
    unitary— 169
    Moebius function 301
    monic —morphism 480
    —polynomial 150
    Monk, G.S. ix, 222
    monoid 24
    monomial 152
    degree of a— 157
    monomorphism 30, 118, 170
    —in a category 480
    morphism 52, 480ff cokernel of a— 483
    epic— 480
    kernel of a— 483
    monic— 480
    zero— 482
    multilinear
    —form 349fF
    —function 349ff multiple root 161, 261
    multiplicative set 142
    multiplicity of a root 161
    mutatis mutandis xv /?-th root of unity, see unity rt-fold transitive 424
    Nakayama's Lemma 389
    natural —homomorphism 469
    —isomorphism 468
    —numbers 9
    —transformation 468fT
    nil —ideal 430
    —radical 379, 450
    nilpotent —element 121, 430
    —endomorphism 85
    —group lOOff —ideal 430
    Noether —Normalization Lemma 410
    —Skolem Theorem 460
    Noetherian
    —modules 372ff, 387ff
    —rings 372, 387ff
    INDEX
    nonsingular matrix 331
    norm 289
    normal —closure 265
    —endomorphism 84
    —extension field 264ff —series 107ff, 375
    —subgroup 4Iff normalization lemma 410
    normalizer 89
    null set 3
    nullity 335
    Nullstellensatz 412
    number cardinal— 16ff natural— 9
    Nunke, R. J. x, xiii, 93
    object —in a category 52
    initial— 57
    terminal— 57
    odd permutation 48
    one-to-one —correspondence 5
    —function 4
    onto function 5
    operation binary— 24
    elementary row or column— 338
    opposite —category 466
    —ring, 122, 330
    orbit 89
    —of a permutation 47
    order —ideal 220
    left— 447
    —of an element 35, 220
    —of a group 24
    partial— 13
    ordered pair 6
    ordering —by extension 18
    linear— 13
    partial— 13
    simple— 13
    total— 13
    orthogonal idempotents 135, 439
    P.I.D., see principal ideal domain p-group 93
    P-primary 380, 384
    P-radical 425
    pair —formation 6
    ordered— 6
    partial ordering 13
    partition 7
    perfect field 289
    permutation(s) 26, 46ff disjoint— 47
    even— 48
    odd— 48
    orbits of— 47
    sign of a— 48
    Polynomial(s) characteristic— 366ff coefficients of— 150
    content of a— 162
    cyclotomic— 166, 298
    degree of— 157, 158
    discriminant of— 270
    Galois group of a—
    269ff general—of degree n 308
    —in n indeterminates 151
    irreducible— 161, 234
    minimal— 234, 356
    minimum— 234
    monic— 150
    primitive— 162
    ring of— 149ff, 151, 156
    roots of— 160
    separable— 261
    power —axiom 3
    —series 154fT
    —set 3
    predecessor immediate— 14
    presentation of a group 67
    primary —decomposition, 381, 383ff —ideal 380ff P-primary ideal 380
    P-primary submodule 384
    —rational canonical form 361
    —submodule 383ff prime associated—ideal 380, 387
    —element 136

    embedded—ideal 384
    —ideal 126ff, 377ff —integer 11
    isolated—ideal 384
    minimal—ideal 382
    —radical 379, 444ff relatively—integers 11
    relatively—elements 140
    —ring 445flf subfield 279
    primitive —element theorem 287, 288
    —ideal 425
    —polynomial 162
    —ring 418ff —root of unity 295
    principal —ideal 123
    —ideal ring 123
    —ideal domain 123
    modules over a—ideal
    domain 218fF
    principle —of mathematical induction 10
    —of transfinite induc- tion 14
    —of well ordering 14
    product —category 467
    Cartesian— 6, 7ff direct— 59ff, 130, 131, 173
    —in a category 53fT
    —map 228
    semidirect— 99
    subdirect— 434
    weak direct— 60, 62
    projection canonical— 8, 59, 130, 173
    projective module 190ff proper —class 2
    —ideal 123
    —refinement 108, 375
    —subgroup 32
    —values 367
    —vectors 367
    Prüfer domain 409
    pullback 170, 484
    purely inseparable —element 282
    —extension 282ff purely transcendental ex- tension 314
    quasi-inverse, 426
    quasi-regular 426
    quaternion group 33,97,99
    quaternions
    division ring of real—
    117,461
    quotient —class 6
    —field 144
    —group 42ff —ring 125, 144ff, 447
    r-cycle 46
    /^-module, see module Rad 1379
    radical —extension field 303ff Jacobson— 426ff nil— 379, 450
    —of an ideal 379
    P-radical 425
    prime— 379, 444ff —property 425
    —ring 429
    solvable by—s 303
    range of a function 3
    rank column— 336, 339
    —of a free abelian group 72
    —of a free module 185
    —of a homomorphism 335ff, 339
    row— 336, 339
    —of a matrix 337ff rational —canonical form 360
    —function 233
    symmetric—function 252ff rationals modulo one 27
    Recursion Theorem 10
    reduced —abelian group 198
    —primary decomposi- tion 381, 384
    —row echelon form 346
    —word 64, 68
    refinement of a series 108, 375
    reflexive —module 205
    —relation 6
    regular —element 447
    —function 412
    —left ideal 417
    —left quasi—, 426
    Von Neumann—ring 442
    relative complement 3
    relation 6, 66
    antisymmetric— 13
    congruence— 27
    equivalence— 6
    generators and—s, 67ff,
    343AF
    reflexive— 6
    symmetric— 6
    transitive— 6
    relative —dimension 245
    —index 245
    relatively prime —integers 11
    —ring elements 140
    Remainder Theorem 159
    Chinese— 131
    representable functor 470
    representation 470
    résolvant cubic 272
    restriction 4
    right —adjoint 477
    —annihilator 444
    —coset 38
    —Goldie ring 447
    —ideal 122
    —inverse of a function 5
    —invertible element 116
    -quasi-regular 426
    —quotient ring 447
    ring(s) 115ff, 371 fF, 414ff Artinian— 372, 421,435
    Boolean— 120
    commutative— 115, 37 Iff direct product of— 130, 131
    discrete valuation— 401
    division— 116, 462
    endomorphism— 415
    Euclidean— 139
    —extensions 394ff Goldmann— 400
    group— 117
    homomorphism of—
    118

    integrally closed— 397
    left quotient— 447
    local— 147
    Noetherian— 372, 387ff —of formal power series 154ff —of polynomials 149ff —of quotients or frac- tions 144ff opposite— 122, 330
    primitive— 418ff prime— 445ff quotient— 125, 447
    radical— 429
    regular— 442
    semi prime— 444ff
    semisimple— 429, 434ff
    simple— 416ff
    subdirectly irreducible—
    442
    root adjoining a— 236
    multiple— 161, 261
    multiplicity of a— 161
    —of unity 294
    simple— 161, 261
    row —echelon form 346
    elementary—operation 338
    —rank 336, 339
    —space 336
    —vector 329
    ruler and compass con- structions 238
    Russell's Paradox 2
    scalar matrix 328
    Schreier's Theorem 110, 375
    Schroeder-Bernstein Theorem 17
    Schur's Lemma 419
    second isomorphism theorem 44, 126, 173
    secondary matrix 340
    semidirect product 99
    semigroup 24
    semiprime ring 444ff semisimple —module 437
    —ring 429, 434ff separable —degree 285ff —element 261
    —extension 261, 282ff, 324
    —polynomial 261
    separably generated exten- sion 322
    separating transcendence base 322
    sequence 11
    exact— 175ff short exact— 176
    series ascending central— 100
    composition— 108, 375
    equivalent— 109, 375
    formal power— 154ff normal— 107ff, 375
    refinement of a— 108, 375
    solvable— 108
    subnormal— 107ff set(s) denumerable— 16
    disjoint— 3
    empty— 3
    equipollent— 15
    finite— 16
    infinite— 16
    linearly ordered— 13
    multiplicative— 142
    null— 3
    partially ordered— 13
    power— 3
    underlying— 55
    well ordered— 13
    Short —Five Lemma 176
    —exact sequence 176
    sign of a permutation 48
    similar matrices 332, 355ff simple —components 440
    —extension field 232
    —group 49
    —module 179, 375,416ff —ordering 13
    —ring 416ff —root, 161, 261
    singleton 6
    skew-symmetric —matrix 335
    —multilinear form 349
    solvable —by radicals 303
    —group 102ff, 108
    —series 108
    span 181
    spectrum 378
    split exact sequence 177
    splitting fields 257ff stabilizer 89
    stable intermediate field 250
    standard
    —basis of Rn 336
    —/i-product 28
    subalgebra 228
    subclass 2
    subdirect product 434
    subdirectly irreducible ring 442
    subfield(s) composite— 233
    —generated by a set 231, 232
    linearly disjoint— 318ff maximal— 457
    prime— 279
    subgroup(s) 3Iff characteristic— 103
    closed— 247
    commutator— 102
    cyclic— 32
    derived— 102
    fully invariant— 103
    —generated by a set 32
    —generated by groups 33
    join of— 33
    maximal normal— 108
    minimal normal— 103
    normal— 4 Iff proper— 32
    Sylow— 94
    transitive— 92, 269
    trivial— 32
    submodule(s) 171
    chain conditions on—
    372ff cyclic— 171
    finitely generated—171
    —generated (or spanned) by a set 171
    primary— 383ff sum of— 171
    torsion— 220
    subnormal series 107ff subring 122
    —generated by a set 231, 232, 395

    subset 3
    subspace 171
    </>-invariant— 356
    substitution homomor- phism 153
    successor immediate— 15
    sum (= coproduct) 54ff sum direct— 60, 62, 173, 175
    —of submodules 171
    summand direct— 63, 437
    surjective function 5
    Swords, R.J., xiii Sylow —p-subgroup 94
    —theorems 92ff symmetric —group 26, 46ff —matrix 335
    —multilinear function 349
    —rational function 252ff —relation 6
    symmetries of the square 26
    tensor product 208ff —of algebras 229
    induced homomorphism on the— 209
    terminal object 57
    third isomorphism theorem 44, 126, 173
    torsion —group 78
    —module 179, 220
    —subgroup 78
    —submodule 179, 220
    torsion-free —group 78
    —module 220
    total —degree 157
    —ordering 13
    trace 289, 369
    transcendence
    —base 313fF
    —degree 316
    separating—base 322
    transcendental —element 233
    —extension 233, 31 Iff purely—extension 314
    transfinite induction 14
    transformation linear— 170, 355ff natural— 468ff transitive —relation 6
    —subgroup 92, 269
    —subring 424
    translation 88
    transpose of a matrix 328
    transposition 46
    triangular matrix 335
    trichotomy law 18
    trivial ideal 123
    U.F.D., see unique factori- zation domain underlying set 55
    union 3
    disjoint— 58
    unique factorization do- main 137
    unit 116
    —map 228
    unitary module 169
    unity root of— 294
    primitive root of— 295
    universal —element 470
    —mapping property 9, 57
    —object 57
    upper bound 13
    valuation —domain 409
    discrete—ring 404
    Van Dyck's Theorem 67
    variety 409
    vector column— 333
    row— 329
    vector space 169, 180ff finite dimensional— 186
    Von Neumann regular ring 442
    weak direct product 60, 62
    Wedderburn's Theorem on finite division rings 462
    Wedderburn-Artin Theorems 421,435
    well ordered set 13
    well ordering law of— 10
    —principle 14
    word 64, 68
    reduced— 64, 68
    empty— 64
    Yoneda, N. 472
    Zassenhaus Lemma, 109, 375
    zero 409
    —divisor 116
    —element 115
    —matrix 328
    —morphism 482
    —object 481
    —of a polynomial 160
    Zorn's Lemma, 13